
Eur. Phys. J. C 53, 649–657 (2008) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-007-0486-1

Regular Article – Theoretical Physics

Gauge dependence of Green’s functions in QCD and QED
K. Nishijima1, A. Tureanu2,3,a

1 Department of Physics, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2 High Energy Physics Division, Department of Physical Sciences, University of Helsinki, Helsinki, Finland
3 Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki, Finland

Received: 4 October 2007 /
Published online: 18 December 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. When all Green’s functions are known in a given gauge we may raise the question of whether
it is possible or not to derive the corresponding ones in a different gauge. The answer is negative in QCD
but affirmative in QED provided that we confine ourselves to the covariant gauge characterized by a gauge
parameter α. We shall discuss the physical significance of this conclusion.

1 Introduction

In quantizing a gauge-invariant Lagrangian we encounter
a well-known difficulty in finding the canonical conjugate
of the time-component of the gauge field. This is a reflec-
tion of the non-uniqueness of the solution of the gauge field
equation due to the gauge freedom. This difficulty has been
resolved in QED by Fermi’s introduction of the gauge-
fixing term into the Lagrangian that provides us with the
lacking canonical conjugate.
Once the theory is quantized by this method, how-

ever, the introduction of an indefinite metric is indispens-
able since the vector field is obliged to inherit it from the
Minkowski metric. This means that the state vector space
resulting from the quantization of the gauge field is larger
than needed for the physical interpretation, and we have to
pick out its physical subspace by introducing a subsidiary
condition. This condition plays the dual role of eliminating
the indefinite metric inherent in the state vector space as
well as of recovering the classical gauge field equation, not
modified by the gauge-fixing term, in the physical subspace.
In the present paper we shall confine ourselves to the so-

called covariant gauge specified by a parameterα called the
gauge parameter. Quantized gauge theories are no longer
invariant under local gauge transformations, because of the
presence of the gauge-fixing term, but it so happens that
the resulting theory is invariant under new global trans-
formations called BRS transformations [1].
In Sect. 2 we shall reinstate the essence of the BRS

transformations in connection with the gauge dependence
of Green’s functions and shall clarify the condition under
which Green’s functions become gauge independent. In
tackling the problem of gauge dependence the renormaliza-
tion group (RG) approach [2, 3] is useful and it is briefly
recapitulated in Sect. 3 with an emphasis on the gauge field
propagator.
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The question of gauge dependence was once raised by
Shirkov in connection with the use of RG in perturba-
tive QCD [4]. The results depend sensitively on the renor-
malization scheme, so that we here propose a scheme in
which the beta-function is made independent of the gauge
parameter α.
In Sect. 4 the RG equations for the running coupling

constant and the gauge parameter are solved and their
ultra-violet asymptotic limits are studied to answer the
question of gauge dependence of Green’s functions. For this
purpose we derive a sum rule [5, 6] that enables us to ex-
press the renormalization constant Z−13 in a simple form.
The Green functions defined as the vacuum expectation

values of the time-ordered products of BRS invariant op-
erators are always independent of α, but those made up of
BRS variant ones are α-dependent. For the latter an im-
portant question is whether it is possible or not to continue
Green’s functions analytically as functions of α. When it
is possible to continue them from α1 to α2, we say that
α1 and α2 are connected. Then, mutually connected values
of α form a set called an equivalence class of gauges, and
we may ask how many equivalence classes of gauges there
are in QCD and also in QED. The answer is that there
are three in QCD and there is one in QED, respectively.
QED is simple, but QCD is complicated, and we may ask
what the multiplicity of equivalence classes would mean.
We shall discuss the physical significance of these results in
connection with the gluon mass.
In Sect. 5 this quest is further pursued by extending the

gauge parameter α into the complex plane.

2 BRS invariance

Local gauge transformations in classical gauge theory
are replaced by global BRS transformations and we shall
briefly recapitulate their properties.
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2.1 BRS transformations

The standard Lagrangian density of a gauge theory, say
QCD, is given by

L= Linv+Lgf+LFP , (1)

where Linv denotes the classical gauge-invariant part, Lgf
the gauge-fixing terms and LFP the Faddeev–Popov (FP)
ghost term characteristic of non-Abelian gauge theories:

Linv =−
1

4
FµνFµν − ψ̄(γµDµ+m)ψ ,

Lgf = ∂µBAµ+
1

2
αBB ,

LFP = i∂µc̄Dµc , (2)

in the customary notation. The gauge parameter is de-
noted by α and Dµ represents the covariant derivative
whose explicit forms are given by

Dµψ = (∂µ− igTAµ)ψ ,

Dµc= ∂µc+ gAµ× c . (3)

The BRS transformations of the gauge field Aµ and
the quark field ψ are defined by replacing the infinitesimal
gauge function by the FP ghost field c or c̄ in their respec-
tive infinitesimal gauge transformations:

δAµ =Dµc , δψ = ig(cT )ψ ,

δ̄Aµ =Dµc̄ , δ̄ψ = ig(c̄T )ψ . (4)

For the auxiliary fields B, c and c̄ we require

δL= δ̄L= 0 ; (5)

then we find

δB = 0 , δc̄= iB , δc=−
1

2
g(c× c) ,

δ̄B̄ = 0 , δ̄c= iB̄ , δ̄c̄=−
1

2
g(c̄× c̄) , (6)

where B̄ is defined by

B+ B̄− ig(c× c̄) = 0 . (7)

In general the BRS transforms of a field φ are given in
terms of the BRS chargesQB and Q̄B by

δφ= i[QB , φ]∓ , δ̄φ= i[Q̄B, φ]∓ , (8)

Q2B = Q̄
2
B =QBQ̄B+ Q̄BQB = 0 . (9)

We choose the− (+) sign in (8) when φ is even (odd) in the
ghost fields c and c̄, which are anticommuting hermitian
scalar fields.
The sum of the gauge-fixing and the FP ghost terms can

be expressed as

Lgf+LFP = δ

(
−i∂µc̄Aµ−

i

2
αc̄B

)
(10)

and evidently we have

δLinv = 0 . (11)

Namely, Linv is closed and Lgf+LFP is exact, and

δL= 0 . (12)

2.2 BRS cohomology

For this section we in particular refer to [5]. The quantiza-
tion of the gauge field and the introduction of the auxiliary
fields B, c and c̄ introduce an indefinite metric into the
state vector space V.
A physical state |f〉 is defined by the following sub-

sidiary condition:

QB|f〉= 0 , |f〉 ∈ V . (13)

In particular, the vacuum state |0〉 is physical,

QB|0〉= 0 . (14)

The physical subspace Vphys is then defined by

Vphys = {|f〉|QB|f〉= 0 , |f〉 ∈ V} . (15)

It is essentially a collection of closed states with respect to
the nilpotent operator QB. We also introduce a subspace
Vd defined by

Vd = {QB|f〉| |f〉 ∈ V} . (16)

This is a collection of exact states with respect to QB and
the Hilbert spaceH is defined as the BRS cohomology by

H= Vphys/Vd . (17)

Then let us consider a set of closed operators A,B, s
satisfying

δA= δB = · · ·= 0 ; (18)

then

〈0|δM ·AB · · · |0〉= 〈0|δ(MAB · · ·)|0〉= 0 , (19)

since the vacuum state is physical.
Let LI and LII be two BRS invariant Lagrangian densi-

ties, namely

δLI = δLII = 0 . (20)

Furthermore, let us assume their difference to be exact:

∆L= δLII− δLI = δM . (21)

For instance, Lagrangian densities corresponding to two
distinct values of α in (2) satisfy these two conditions, since
we find

M =−
1

2
i∆α(c̄B) . (22)
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Then we introduce time-ordered Green’s functions in the
two gauges given above.
In the gauge I we have the following path integrals:

〈AB · · ·〉I =
1

NI

∫
D(path)AB · · · exp(iSI) , (23)

NI =

∫
D(path) exp(iSI) . (24)

D(path) denotes the path integral over all the field vari-
ables, and we have similar expressions in the gauge II, and
the difference between the two actions is given by

∆S = SII−SI =

∫
d4x∆L=

∫
d4xδM . (25)

Green’s functions in the gauge II can be expressed as

〈AB · · ·〉II =
〈AB · · · exp(i∆S)〉I
〈exp(i∆S)〉I

. (26)

Now we expand the denominator on the r.h.s. of (26) in
powers of ∆S and use (21) and (19) to obtain

〈exp(i∆S)〉I = 1 . (27)

Thus (26) reduces to

〈AB · · ·〉II = 〈AB · · · exp(i∆S)〉I . (28)

The r.h.s. can be expanded in powers of ∆α = αII−αI.
When this expansion converges, this is an analytic contin-
uation of Green’s functions as functions of α. When this is
the case we may say that the two values of α, α1 and α2,
are connected, and the set of α mutually connected will be
called an equivalence class of gauges. The question of how
many classes there are in a given gauge theory will be dis-
cussed in a subsequent section.
When all the operators are closed, satisfying (18), we

obtain with the help of (19) the equality

〈AB · · ·〉II = 〈AB · · ·〉I . (29)

This shows that Green’s functions constructed in terms
of closed operators alone are gauge independent. The S-
matrix elements for observable hadronic processes are ob-
tained by applying the LSZ reduction formula [7] to the
Green functions defined in terms of BRS invariant opera-
tors, so that they are independent of the choice of the gauge
parameter α. Of course, this statement does not apply to
Green’s functions constructed in terms of BRS variant op-
erators, such as the gauge field propagator that we shall
investigate in a subsequent section.

3 Renormalization group

In the past Shirkov emphasized the gauge dependence of
the RG treatment in perturbative QCD [4], since the re-
sults are sensitive to the renormalization scheme. He even
presented an example in which asymptotic freedom is valid

only for positive values of α but not for negative ones. This
is apparently due to the α dependence of the beta-function.
Therefore, we shall first briefly review a renormalization
scheme that makes the beta-function independent of the
gauge parameter [6].
First we shall refer to (28), which has been derived

in the unrenormalized version. The field operators Aλ
and B and the gauge parameter α are multiplicatively
renormalized:

A
(0)
λ = Z

1/2
3 (α)Aλ , B

(0) = Z
−1/2
3 (α)B ,

α(0) = Z3(α)α , (30)

where the superscript (0) is attached to the unrenormal-
ized expressions.
As a special case of (28) we shall choose αII = α and

αI = 0; then we have

〈AB · · ·〉α =

〈
AB · · · exp

(
iα

2

∫
d4xB(x)B(x)

)〉
0

(31)

in the unrenormalized version. The renormalized version
of (31) takes exactly the same form, because of the identity

α(0)B(0) ·B(0) = αB ·B . (32)

Then we introduce RG equations in the Landau gauge,
α= 0. For the renormalized version of Green’s functions we
have an equation of the following form:

(D0+γG)〈AB · · ·〉0 = 0 , (33)

where γG is the anomalous dimension of Green’s function
〈AB · · ·〉0 in the Landau gauge and

D0 = µ
∂

∂µ
+β(g)

∂

∂g
. (34)

The anomalous dimension of the gauge field in the Landau
gauge, which is obviously α-independent, is denoted by γV .
Then the l.h.s. of (31), renormalized in the Landau

gauge, satisfies

(D0+γG)〈AB · · ·〉α

= 2γV

〈
AB · · · exp

(
iα

2

∫
d4xB(x)B(x)

)〉
α

.

(35)

On the other hand, we also have

α
∂

∂α
〈AB · · ·〉α =

〈
AB · · · exp

(
iα

2

∫
d4xB(x)B(x)

)〉
α

.

(36)

Combining these two equations we find

(D+γG)〈AB · · ·〉α = 0 , (37)

where

D =D0−2αγV
∂

∂α
. (38)
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Next we introduce the gauge field propagator

〈Aaλ(x), A
b
µ(y)〉=

−i

(2π)4
δab

∫
d4keik(x−y)Dλµ(k) ,

(39)

which is the vacuum expectation value of the time-ordered
product of two color gauge field operators, and

Dλµ(k) =

(
δλµ−

kλkµ

k2− iε

)
D(k2, α)+α

kλkµ

(k2− iε)2
,

(40)

D(k2, α) =

∫
dm2

ρ(m2)

k2+m2− iε
. (41)

Then let us introduce

R(k2, α) = k2D(k2, α) . (42)

Since the gauge field has been renormalized in the Landau
gauge, we have

R(µ2, 0) = 1 . (43)

In other gauges we have to employ the renormalization
factor Z3(α) instead of Z3(0), and this amounts to a fur-
ther renormalization for R. The properly renormalized R
function and the gauge parameter are denoted by R̄ and
ᾱ, respectively, and they are given, in a manner consistent
with (30), by

R(k2, α) =R(µ2, α)R̄(k2, ᾱ) , (44)

α=R(µ2, α)ᾱ . (45)

The function R(k2, α) renormalized in the Landau
gauge satisfies

(D+2γV )R(k
2, α) = 0 . (46)

Then the function R̄(k2, ᾱ) normalized by

R̄(µ2, ᾱ) = 1 (47)

satisfies

(D+2γ̄V )R̄(k
2, ᾱ) = 0 , (48)

where the new anomalous dimension γ̄V is given by

γ̄V = γV +
1

2
D lnR(µ2, α) . (49)

Next we switch the set of parameters from (µ, g, α) to
(µ, g, ᾱ). The anomalous dimension γ̄V will be expressed as
a function of g and ᾱ, and it will be denoted by γ̄V (g, ᾱ)
from now on. Then

D = (Dµ)
∂

∂µ
+(Dg)

∂

∂g
+(Dᾱ)

∂

∂ᾱ

= µ
∂

∂µ
+β(g)

∂

∂g
−2ᾱγ̄V (g, ᾱ)

∂

∂ᾱ
. (50)

In this way we have established a renormalization prescrip-
tion leading to an α-independent beta-function. For the
quark field we can derive its anomalous dimension γ̄ψ in
a manner similar to the above derivation of γ̄V . Since the
beta-function is independent of α, the concept of asymp-
totic freedom is gauge independent. From now on we shall
skip the bars introduced above.

4 Asymptotic limits of running parameters

The RG equations for QCD have been studied in detail and
we shall reinstate their essence in what follows [5, 6].

4.1 Renormalization constants

An element of RG may be expressed as

R(ρ) = exp(ρD) , (51)

where ρ denotes the parameter of RG and the composition
law of this group is given by

R(ρ)R(ρ′) =R(ρ+ρ′) . (52)

Let Q be a function of g, α and µ, and let us define the
running Q to be

Q̄(ρ) = exp(ρD)Q(g, α, µ) =Q(ḡ(ρ), ᾱ(ρ), µ̄(ρ)) ,
(53)

with the initial condition

Q̄(0) =Q . (54)

Let the anomalous dimension of the Green function
G(pi; g, α, µ) be γ(g, α); then we have

[D+γ(g, α)]G(pi; g, α, µ) = 0 . (55)

Its running version is defined by

Ḡ(ρ) = exp(ρD)G(pi; g, α, µ) , (56)

and it satisfies

∂

∂ρ
Ḡ(ρ) =−γ̄(ρ)Ḡ(ρ) . (57)

The formal solution is given by

G(pi; g, α, µ) = exp

[∫ ρ
0

dρ′γ̄(ρ′)

]
G(pi; ḡ(ρ), ᾱ(ρ), µ̄(ρ)) .

(58)

Then we assume, in the presence of a cut-off Λ, that the
running coupling constant ḡ(ρ) tends to the unrenormal-
ized or the bare one g0 in the limit ρ→∞, namely,

lim
ρ→∞

ḡ(ρ) = g(0) , (59)
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and similarly

lim
ρ→∞

ᾱ(ρ) = α(0) , (60)

lim
ρ→∞

µ̄(ρ) = µ lim
ρ→∞

eρ =∞ . (61)

In this limit (58) reduces to

G(pi; g, α, µ) = exp

[∫ ∞
0

dρ′γ̄(ρ′)

]
G(0)(pi; g

(0), α(0),∞) ,

(62)

where G(0) denotes the unrenormalized version of Green’s
function G. Then the renormalization constant of G de-
noted by Z is given by

Z = exp

[
−

∫ ∞
0

dρ′γ̄(ρ′)

]
. (63)

The solution of (48) reads

R(k2; g, α, µ)

= exp

[
2

∫ ρ
0

dρ′γ̄V (ρ
′)

]
R(k2; ḡ(ρ), ᾱ(ρ), µ̄(ρ)) .

(64)

Now apply the Lehmann representation (41) to the l.h.s.
and take the limit ρ→∞ after putting k2 = µ̄2(ρ); then
with the help of (63) we obtain

Z−13 =

∫
dm2ρ(m2) = exp

[
2

∫ ∞
0

dρ′γ̄V (ρ
′)

]
. (65)

In the cut-off theory we first take the limit ρ→∞ and then
Λ→∞, but in what follows we invert the order of limiting
procedures by taking the limit Λ→∞ first. Thus some of
the initial conditions introduced in the cut-off theory are
not necessarily satisfied. As an example we shall see later
that the limiting values (59) and (60) cannot be arbitrary
despite our expectation that the unrenormalized g(0) and
α(0) should be chosen arbitrarily.

4.2 Asymptotic limits of running parameters

Next we shall study the RG equations for the running pa-
rameters ḡ(ρ), ᾱ(ρ) and µ̄(ρ) that follow from (53),

d

dρ
ḡ(ρ) = β̄(ρ) , (66)

d

dρ
ᾱ(ρ) =−2ᾱ(ρ)γ̄V (ρ) ,

d

dρ
µ̄(ρ) = µ̄(ρ) or µ̄(ρ) = µeρ .

First we shall define their asymptotic limits by

ḡ(∞) = g∞ , ᾱ(∞) = α∞ , µ̄(∞) =∞ . (67)

In the absence of a cut-off they do not necessarily reduce to
their unrenormalized counterparts in (59) and (60).

In perturbation theory, β(g) and γV (g, α) are given in
the form of a power series,

β(g) = g3
(
β0+β1g

2+ . . .
)
, (68)

γV (g, α) = g
2
(
γ0(α)+γ1(α)g

2+ . . .
)
, (69)

where

γ0(α) = γ00+γ01α ,

γ1(α) = γ10+γ11α+γ12α
2, · · · (70)

The lowest order coefficients are given by

β0 =−
1

32π2

(
22−

4

3
Nf

)
,

γ00 =−
1

32π2

(
13−

4

3
Nf

)
,

γ01 =
3

32π2
> 0 . (71)

When β0 is negative, namely, when Nf ≤ 16, asymptotic
freedom is realized and we shall assume this in what
follows.
Asymptotic freedom [8, 9] is characterized by

g∞ = 0 , (72)

and for large values of ρ we obtain approximately

ḡ2(ρ) =
1

bρ
(b=−2β0 > 0) . (73)

By integrating the second equation in (66) we find a sum
rule [5, 6]:

ln
α∞

α
=−2

∫ ∞
0

dργ̄V (ρ) , (74)

or

Z−13 = exp

[
2

∫ ∞
0

dργ̄V (ρ)

]
=
α

α∞
. (75)

The essence of our argument is based on this sum rule.
Our main problem is the determination of the asymp-

totic limit α∞, but this problem has been discussed in
detail before, so we shall only quote the results in what fol-
lows. We shall come back to it, however, in the next section
for a different purpose.
For α = 0 we have ᾱ(ρ) = 0, and hence α∞ = 0. It is

clear that ᾱ(ρ) and α are always of the same signature. We
find three possibilities for α∞:

α∞ =−∞, 0, α0 , (76)

where α0 is defined by

γ0(α0) = γ00+γ01α0 = 0 or α0 =−γ00/γ01 . (77)

For α0 > 0 or Nf < 10, we find

α∞ =

⎧⎪⎨
⎪⎩
α0, α > 0 ,

0, α= 0 ,

−∞, α < 0,

(78)



654 K. Nishijima, A. Tureanu: Gauge dependence of Green’s functions in QCD and QED

and in this case the sum rule can be expressed as
∫
dm2ρ(m2) =

α

α0
θ(α) , (79)

where

θ(α) =

{
1, α≥ 0 ,

0, α < 0 .
(80)

The r.h.s. of (79) is a continuous function of α, but its
derivative with respect to α develops a discontinuity at
α= 0. Thus, the set of real α, denoted byD, is divided into
three connected subsets:

D =D(−∞)
⋃
D(0)

⋃
D(α0) , (81)

where we confine ourselves to positive α0 or Nf < 10:

D = {α|α ∈R} ,

D(−∞) = {α|α < 0} ,

D(0) = {α|α= 0} ,

D(α0) = {α|α > 0} . (82)

Thus, for gauge-dependent Green’s functions such as the
gluon propagator we find three equivalence classes of
gauges.
In one of the papers by one of the present authors [10]

the residue of the massless pole in the two-point function

〈
Aaλ(x), F

b
µν(y)

〉
(83)

has been studied, and it has been concluded that the
residue vanishes in the two classes D(−∞) and D(0), sug-
gesting that the gluon in these gauges would likely be mas-
sive, whereas it is non-vanishing in the classD(α0), imply-
ing a zero mass for the gluon. This means that the gluon
mass would be gauge dependent. The interpretation of this
result is delicate. In that paper we tacitly assumed that the
gluon mass is a physical quantity and that the above re-
sult indicates gauge dependence of QCD, or more precisely
the class dependence of the gluonmass, namely, it is zero in
the equivalence class of gaugesD(α0), but it is non-zero in
the classesD(−∞)

⋃
D(0). The gluon mass denoted byM

must be RG invariant

DM = 0 (84)

within a class.
We found that this interpretation is misleading since

the physically observable quantities must be gauge-inde-
pendent as illustrated by (29).
The S-matrix elements for hadronic processes are gauge

independent as is clear from (29), and the condition for
color confinement [5, 6, 11–13]

Z−13 = 0 (85)

is satisfied in the classes D(−∞)
⋃
D(0). Therefore, in

these classes color confinement is realized and the unitarity

condition of the S-matrix between the two hadronic states
|a〉 and |b〉 reads

∑
n

〈b|S†|n〉〈n|S|a〉= 〈b|a〉 , (86)

where the sum over the intermediate states is saturated by
hadronic states alone without introduction of the confined
quarks and gluons. Since the S-matrix is gauge indepen-
dent this statement is also valid for the class D(α0). Thus,
confinement is a gauge-independent or class-independent
concept. This conclusion does not contradict the gauge
dependence of the gluon mass since the mass of the con-
fined gluons is never observed and turns out to be an un-
physical quantity. A similar observation has been made by
Fujikawa, Lee and Sanda [14]: that particles with gauge-
dependent masses are unphysical and not subject to obser-
vation in connection with the Rξ gauge. The situation is
completely different in QED, as we shall show in the next
section.

5 Introduction of the complex gauge
parameter

From (69) and (70) we can readily deduce that γV can be
expanded into a double power series in g2 and αg2. For suf-
ficiently large ρ, we can assume that ḡ2(ρ)� 1, and if ᾱ(ρ)
is bounded below a certain constant, we may use perturba-
tion theory in powers of g2. In the lowest order we have

dḡ

dρ
= β(ḡ)≈ β0ḡ

3 =−
b

2
ḡ3 , (87)

and its solution is given by

ḡ2(ρ) =
g2

1+ bg2ρ
. (88)

When ᾱ is bounded we employ the following approximate
equation:

dᾱ

dρ
=−2ᾱγ̄V ≈ f(ρ)ᾱ(α0− ᾱ) , (89)

where

f(ρ) = 2γ01ḡ
2(ρ)> 0 . (90)

When the integral (74) is convergent, α∞ must be finite.
The expansion of γV in powers of g

2 starts from g2 and for
large values of ρ the behavior of ḡ2(ρ) is given by (73), so
that the integral of the first term in the expansion of γ̄V
diverges like ∫ ∞

0

dρḡ2(ρ)∼
1

b
ln∞ . (91)

In order for the integral of the power series to converge
term by term in (74), the condition

γ0(α∞) = 0 (92)
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must be satisfied. With reference to (77) we find

α∞ = α0 . (93)

When the integral (74) is divergent, ln(α/α∞) should
diverge, so that we find

α∞ = 0 or ±∞ . (94)

Now, when ᾱ goes off α∞ starting from its neighborhood
for increasing ρ, α∞ is called a repulsive asymptotic limit.
Otherwise, when ᾱ approaches α∞ again starting from its
neighborhood, it is called an attractive asymptotic limit.

5.1 Case of positive α0 (Nf < 10)

Integration of (89) in the neighborhood of α0 yields

α0− ᾱ(ρ)

α0−α
∼= exp

[
−α0

∫ ρ
0

dρ′f(ρ′)

]
→ 0 , for ρ→∞ .

(95)

Thus α0 is found to be attractive. In the neighborhood of 0,
on the other hand, we find

ᾱ(ρ)

α
∼= exp

[
α0

∫ ρ
0

dρ′f(ρ′)

]
→∞ , for ρ→∞ .

(96)

Thus α∞ = 0 is found to be repulsive.
The flow of α(ρ) on the real α axis for increasing ρ is

given in Fig. 1.
From Fig. 1 we conclude that −∞ is also attractive.

5.2 Case of negative α0 (10≤Nf ≤ 16)

In this case 0 and−∞ are attractive and α0 is repulsive; see
Fig. 2.
In what follows we shall confine ourselves to the case

of positive α0 and shall study what would take place when
α turns out to be complex while keeping g2 real. For this
purpose we assume that g2 is already sufficiently small and
that |ᾱ(ρ)| is bounded to guarantee the following treat-
ment of the RG equations.
The solution of (89) as combined with (88) is given by

ᾱ(ρ) = α0
[(α0
α
−1
)
(1+ bg2ρ)−n+1

]−1
, (97)

Fig. 1. Flow of ᾱ(ρ) along the real α axis for increasing ρ
(α0 > 0)

Fig. 2. Flow of ᾱ(ρ) along the real α axis for increasing ρ
(α0 < 0)

where

n= γ00/β =

(
13−

4

3
Nf

)/(
22−

4

3
Nf

)
. (98)

For α0 > 0, we have n > 0.

(1) α > 0.
In this case we can easily check for ρ > 0 that

(α0
α
−1
)
(1+ bg2ρ)−n+1> 0 , (99)

and, as expected, we have

lim
ρ→∞

ᾱ(ρ) = α0 . (100)

(2) α= 0.
In this case, α = 0 is a fixed point, so that we have
ᾱ(ρ) = 0, and consequently

lim
ρ→∞

ᾱ(ρ) = 0 . (101)

(3) α < 0.
The asymptotic limit of ᾱ(ρ), when we start from
a negative α, should be equal to either 0 or −∞. Since
α∞ = 0 is repulsive, α∞ =−∞ is the only choice. In
this case we cannot use the series expansion in powers
of α, since |ᾱ| increases indefinitely for increasing ρ.

(4) Complex α.
Given an imaginary part iε to be added to α,

α→ α+ iε , (102)

then (
α0

α+ iε
−1

)
(1+ bg2ρ)−n+1 �= 0 , (103)

so that (97) gives

lim
ρ→∞

ᾱ(ρ) = α0 (ε �= 0) , (104)

for an arbitrary choice of the real part α, provided that
the imaginary part is non-zero. As mentioned in (1)
this result is also valid even for ε = 0 for α > 0. The
only exceptions are the cases α= 0 and α < 0 as men-
tioned in (2) and (3).

In Sect. 4 we have divided the set of real α into three sub-
sets or three classes on the real axis, but we can extend this
division to the set of complex α as follows:

D(2) =D(1)(−∞)
⋃
D(0)(0)

⋃
D(2)(α0) , (105)

where

D(2) = {α|α ∈ C},

D(1)(−∞) = {α|α < 0},

D(0)(0) = {α|α= 0},

D(2)(α0) = {α|α ∈ C,α≤ 0 excluded} . (106)
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Fig. 3. Lines of RG flow in the complex α plane for increasing
ρ (α0 > 0)

The superscripts (2), (1) and (0) denote the dimensionality
of these sets or classes, respectively.
Next we shall generalize Fig. 1 to the complex plane.

The lines of RG flow show their behavior qualitatively or
topologically, but not quantitatively.
It is interesting to recognize that the lines of RG flow

in Fig. 3 resemble the lines of force generated by a dipole.
All flow lines tend to α0, except for the one along the nega-
tive real axis that cannot go up or down in the complex
plane. It might be better to introduce the third g2 axis per-
pendicular to the complex α plane. Then the RG flow lines
are given by three-dimensional curves and the plot in Fig. 3
represents the projection of these curves onto the complex
alpha plane.
In (79) we found that α= 0 is a discontinuity for the in-

tegral of the spectral function of the gluon propagator. We
can extend this observation to the complex α plane, and for
this purpose we shall write down the sum rule for negative
α and also for α+ iε:∫

dm2ρ(m2, g2, α, µ) = 0 (α < 0) , (107)

lim
ε→0

∫
dm2ρ(m2, g2, α+ iε, µ) =

α

α0
(α < 0) .

(108)

This shows that there is a discontinuity in the integral of
the spectral function when α approaches the negative real
axis.

5.3 QED

The situation is completely different in QED. First of all,
a gauge-invariant two-point function

〈Fλσ(x), Fµν(y)〉 (109)

can be expressed in terms of the transverse part of the pho-
ton propagator, so that the photon mass that appears as
the pole of this expression is physical. QED is characterized
by Ward’s identity

Z1 = Z2 , (110)

Fig. 4. Lines of RG flow in the complex α plane for increasing
ρ (QED)

which is expressed in terms of anomalous dimensions by

β(e) = eγV (e) , (111)

from which we can derive

d

dρ
[ē2(ρ)ᾱ(ρ)] = 0 . (112)

As mentioned before, the spectral function ρ(m2) does not
depend on α; nevertheless, we have the sum rule

Z−13 =

∫
dm2ρ(m2) =

α

α∞
> 1 . (113)

The only consistent choice of α∞ that makes Z3 indepen-
dent of α is α∞ = 0, and e

2
∞ =∞ follows from (112).

In this case, α∞ is the only asymptotic limit that is at-
tractive, and there is only one equivalence class of gauges in
QED. Furthermore, e∞ =∞ signifies that γV (e) is positive
definite, and the expression

ᾱ(ρ)

α
= exp

[
−2

∫ ρ
0

dρ′γ̄V (ρ
′)

]
(114)

is real and decreases with increasing ρ. The lines of the RG
flow in QED are shown in Fig. 4.
Here the lines of the RG flow resemble the lines of force

generated by a monopole.
In QED we have only one equivalence class of gauges

and the massless photon is physical and observable. In this
case we have

Z−13 =∞ , (115)

and charge confinement is not realized.

6 Conclusions

Wemay summarize what we have done in this paper in con-
nection with the results obtained in a series of papers on
this subject [5, 6, 11, 12].
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1. Color SU(3) symmetry.
For color confinement we need an exact non-Abelian
gauge symmetry. If this symmetry is broken, a color
singlet state is forced to mix with colored states and
consequently color cannot be confined. Mathematically,
the original form of the condition for color confine-
ment was given by the absence of the massless spin
zero component in the current δδ̄Aaλ, but breaking of
color symmetry would induce the unwanted massless
spin zero component in that current in the form of
the Nambu–Goldstone boson. In Abelian gauge theo-
ries such as QED the massless spin zero component is
always present, thereby preventing the charges from be-
ing confined.

2. Condition for color confinement.
With the help of the renormalization groupwe can show
that a sufficient condition for color confinement can be
cast in the form of (85), which formed the basis of our
discussion in the present paper.

3. Evaluation of Z3.
Furthermore, with the help of the renormalization
group we can derive the identity (75) and can show with
the help of asymptotic freedom that for negative choices
of α, eventually below a certain negative constant, α∞
turns out to be −∞, satisfying the condition (85) for
confinement.

4. S-matrix in confined QCD .
By using gauge-independent Green’s functions we can
express the S-matrix elements for hadronic reactions by
applying the reduction formula [7]. The unitarity con-
dition for the S-matrix between two hadronic states is
expressed by (86), and confinement is characterized by
the statement that the sum over the intermediate states
is saturated by keeping only hadronic states, excluding
colored particles such as quarks and gluons.

If confinement is realized in one gauge in the above
sense, it is clearly realized also in all other gauges, since

the S-matrix is gauge independent. In this sense the
concept of gauge independence is a key factor in un-
derstanding confinement. The importance of gauge in-
dependence or invariance has been stressed by many
authors [14–16].
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